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Abstract

For a given graph G = (V, E), aset D = V (G) is said to be an
outer-connected dominating set if D is dominating and the

graph G — D is connected. The outer-connected domination
number of a graph G, denoted by j/_, is the cardinality of a

minimum outer-connected dominating set of G. In this paper

we investigate the effects of a vertex removal on the outer-

connected domination number of a graph.
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1. Introduction

The outer-connected domination was introduced by Cyman in his paper
“The outer-connected domination number of a graph” [2]. The study of
analysing the effects of removal of a vertex on any domination parameter
has remarkable applications in the field of network theory. So, in this
paper the effect of a vertex removal on the outer-connected domination

number of a graph is being studied.
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Let G = (V,E) be a simple graph. The open neighbourhood of a vertex
v, denoted by N (v), is the set of all vertices adjacent to v in G and the
closed neighbourhood is N[v]=N(v)U{v}. A vertex u is said to be a
private neighbour of a vertex v with respect to a set D if
N[u]lND={v}. The private neighbour set of a vertex v with respect to
the set D is denoted by pn[v, D]. The degree d;(V), of a vertex v is
the number of edges incident to v in G . The minimum and maximum
degree among all vertices of Gis denoted by O6(G) and A(G)
respectively. A vertex v of degree A(G) is called a universal vertex, and a
vertex of degree one is called a pendant vertex. An edge e with end
vertices u and v is denoted by e=(u,v). If u is a pendant vertex,
then (u,v) is called a pendant edge. A vertex v of G is called a
support if it is adjacent to a pendant vertex. Let € be the set of all
pendant vertices of G . Let K, , C, and P, denote the complete graph,
the cycle and the path of ordern, respectively. For positive integers
Ny, n,,....n,, let K,

., be the complete multipartite graph with

n,,
vertex set S,US,U---US ,where |S;|l=n for 1<i<t. A wheel
W ,where n>4,is a graph with n vertices, formed by connecting a

vertex to all vertices of a cycle C, ;. A subdivision of an edge uv is

obtained by removing edge uv, adding a new vertex w, and adding
edges uw and vw. A wounded spider is the graph formed by
subdividing at most #—1 edges of a star K,,. A caterpillar is a tree of
order three or more, the removal of whose pendant vertices produces a

path. For graph theoretic terminologies which are not specified here, we
refer to the book by Chartrand and Lesniak [1].
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A set D of vertices of a graph G is said to be a dominating
set if every vertex in V—Dis adjacent to a vertex in D. A set

D cV(G) is said to be an outer-connected dominating set of G if D is
dominating and either D =V (G) or G-D is connected. The cardinality of
a minimum outer-connected dominating set in G is called the outer-

connected domination number of G and is denoted byy.(G). An

outer-connected dominating set of cardinality 7, is called a 7, — set. For

other concepts in connected domination, refer to [3], [4] and [5].

2. Definitions and Preliminary results

Definition 2.1. The vertex set V(G) of a graph G can be
partitioned into three sets \76_, ‘7: and \760, according to how the removal

of a vertex affects the outer-connected domination number of G. Here,

V. ={veV(G)/7.(G-v)<7.(G))
V ={veV(G)/7.(G-v)>7.(G)} and
V! ={veV(G)/7.(G-v)=7.(G)}.

Example 2.2. Consider the graph G given in Figure 2.1. Here

176_ ={Vs,V¢}, VC* ={v,,v,;}and ‘7@0 ={v,,v,}.



CRITICAL AND STABLE OUTER-CONNECTED DOMINATION NUMBER

18
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Vi Vy

Figure 2.1.

Theorem 2.3. [2]

(i) 7.(K )=Ifor n>1.

(i) 7.(C,)=n—2for n>3.
n-1, n=2,3

i) 7. (P)=
i) 7. {n—2, n>4
(iv) If t=22and n,<n,<..<n, then
n, if t=2andn =1,
7C(Kn,,n2,...,n,): 1 if t=3andn =1,
2 if tz2andn, >1.

Theorem 2.4. [2] If G is a connected graph on N =2 wvertices, then

7.(G)=n—1 ifand only if G is a star.

Theorem 2.5. [2] If G,,...,G, are the components of a graph G,
then 7.(G) =l V(G) | —max{I V(G,) | -7.(G,) :1=1,...,r}.
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3. Generalized graphs

Theorem 3.1. For a complete graph on n vertices, V(Kn)=‘7CO(Kn),

nx2.

Proof. Let v be any vertex of K, . Then by Theorem 2.3(i),
7.(K,—-v)=7.(K, )=1=7.(K,)), VveV(K). Hence,
V(K,)=V'(K)).

Theorem 3.2. For a path on n vertices, V(P)) Z‘Zf(Pn), when n 2> 8.
Proof. Let v be any vertex of P. If P —v is connected then by
Theorem 2.3(iii) 7.(P,—v)=n—-1-2=n-3<y (P))=n—2.( Here
n—22>4 as n=8). Suppose P, —V is disconnected. Let Pm1 s sz be

the two components of P —v so that m, +m, +1=n. Without loss of

generality, = we  assume  that  m; =2m,.By Theorem 25,
V.(P,—v)=IV(P,—v)|—max {| V(F,)I —77C(PmI ),
V(P )I-7.(P, )}

Case 1: Suppose M, <3. Then M, =4.By Theorem 2.3(iii),
7.(F,)=m —2and 7 (F, ) =m, —1.Therefore

Ve (B, —v) =n—1—max{m — (m; —2), m, —(m, —1)} =
n—1-max{2,1}=n—-1-2=n-3.

Case 2: Suppose m, 24. Then m; =24. (Since m, =m,). Once

again by Theorem 2.3(iii), 7.(F, )=m —2 and 7 .(F, )=m,—2.
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Therefore
7. (Pn—v) =n—1—max{m, —(m, —2),m, —(m, —2)}
=n—1—max{2,2}= n-3.

Hence in both the above two case,

7.(P,—v)=n—3<7.(P)=n—2. Therefore V(P)=V. (P), n>8.

Theorem 3.3. For a cycle on n wvertices,

V' n=3or4,
V(e )=1% n or
V_, otherwise.

Proof. Case 1: Let n = 3. By Theorem 23(i), 7.(C,)=1. Also
C,—v=P,for any ve V(C;)and again by Theorem 2.3(iii),
7.(P)=1. Therefore V(C,)=V’. Now let n = 4. Then by the similar
argument 7,(C, —v) = 7.(P,) =2,V v e V(C,). Thus V(C,) =V°.
Case 2: Let n>5. By Theorem 2.3(ii), 7.(C,)=n—2 and
7.(C,—v)= 7. (P,_,)=n—3. (Sincen —1= 4 ). Therefore
7.(C,—v)<7.(C,), VveV(C,)and hence V(C,)=V.(C,).

Note that if G = K, then by Theorem 3.1, V(Kz) = ‘700 (Kz) Now,
in the following theorem we consider a complete bipartite graph other

than K, .

Theorem 3.4. Let G=G(V,E)be a complete bipartite graph with
bipartitionV =V, UV,, where |V, |l=n, and |V, I=n, (n,2n,).
VAG), ifveV,

() I =1, then ve< -
Vg . {‘{ (G), otherwise.
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(ii)
VG, ifveV,

Ifni=2andno>ng then v € )
V (G), otherwise.

(iii)
If mi=n=2 or n, 2 n, 23, then V(G) = ‘ZO(G)-

Proof. (i) Suppose n, =1. By Theorem 2.3(iv), 7.(G)=n,. Let veV,.
Then <G-v> is totally disconnected.  Therefore
7.(G-v)=n,=7.(G) andso ve ‘ZO (G). Suppose v &V,. Then
<G -V > is again a star graph Kl’nrl. Then by Theorem 2.4, we

have 7.(G—v) = 7.(K,, ) =(1+n,—~D)~1=n, -1

<7.(G)=n,. Hence vV € ‘76_ (G).

(i) Now by Theorem 2.3(iv), }/ (G)=2. Let v €V,. Then
<G-v> is a star graph K,,. By Theorem 24,
7.(G-v)=1 +n,—1=n,>7(G)=2.Hence veV'(G).
Suppose v&V,. Then <G—Vv> is again a complete bipartite
graph K, , ,.Then by Theorem 2.3(iv), 7,(G—v) =2=7.(G).
Hence v € \7(0 (G).

(i) Suppose n,=n,=2. Then for any vertex veV(G),

7(G-v)=7.(R) =2=y . (C,) = y.(G) by

Theorem  2.3(ii), (iii)). Hence V(G) 2\700 (G).Suppose

n, 2n, =2 3. Let v be any vertex of G. Then <G —V > is again a

complete bipartite graph. Then by Theorem 2.3(iv),



CRITICAL AND STABLE OUTER-CONNECTED DOMINATION NUMBER 22

7.(G—v)=2=7 (G). Hence V(G) =V'(G).
Theorem 3.5. Let W be a wheel of ordern. Then for any vertex
veVW,), we have,

70 . . .

V', if n=4orvisanon—universal vertex
veq < :
V', otherwise

Proof. Let v be the universal vertex of W . Then clearly, {v} will
form a dominating set of W and W —v=C, |, which is a connected
graph. Therefore {v} is an outer-connected dominating set of W and
so 7, (VVn ) =1.
Now let n=4 and u be any vertex of W,. Then
77C(VV4 —u)= ]7L,(C3)=1 = y.(W,). Hence u 6\700.
Now let us assume that =5 and u be any vertex of W . Then we

have the following cases.

Case 1 : Suppose u=v. Then <W —u> is a cycle of order
n—1.Thereforey (W, —u)=y.(C,_\)=n—1-2=n-3>y. (W),
(n—-3>1 asn2=5). Hence u EV:.

Case 2 : Suppose U #V. Then the universal vertex {u} will form an

outer-connected dominating set of W —u. Therefore

7. W, —u)=1=7.(W,)andso u €V°(G).
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4. More Results

Theorem 4.1. Let p be a pendant vertex of a graph G . Then there exists a
minimum outer-connected dominating set Dof G such that p g D if and

only if G is a star.
Proof.  First, let us assume that there exists a minimum outer-connected

dominating set D such that p ¢ D. Since V(G)— D is connected and p

is an isolated vertex in <V(G)—D >, pmust be the only vertex in

V(G)—D. Therefore 7.(G)=n—1. By Theorem 24, G is a star.

Converse is obvious.

Observation 4.2. From the above theorem we can observe that for every graph,

other than star, all pendant vertices belong to every outer-connected dominating set.

Theorem 4.3. Let G(#K,, ,n=>1)be a graph and (p,q) be a pendant

edgeof G. Then for any J .- set D of G, we have,

() If ge D, then peV_(G).

(i) Let g & D.
(@) If g & pn[p, D), then p V. (G).
(b) If g € pn[ p, D], then

‘700 Gv ‘7; (G), if gqisnotacutvertexof <G—-D >
er . ~
P VAG)UVI(G), otherwise.

Proof. (i) Since the only neighbour of p is in D, D—p is a
dominating set for G—pand <(G—p)—(D—p)> is connected.



CRITICAL AND STABLE OUTER-CONNECTED DOMINATION NUMBER 24

Therefore D — p is an outer-connected dominating set for G — p. Thus

7(G-p)<ID—pl<IDI|=7(G). Hence peV (G).

(i) Let ggD.

(a)

(b)

Given g & pn| p,D]. Then (D'=)D— p will be a
dominating set for G — p. Also p is not an internal
vertex of a path Dbetween two  vertices
in<(G—p)—D'>. Therefore <(G—p)—D'>
is connected. Hence D'is a an outer-connected

dominating set for G-p. Therefore
7(G—p)<SIDI<IDI=7.(G) and so
peV. (G).

Letg € pn[p,D]. Then no vertex of D' will

dominate ¢ in G- p. Therefore either the

vertex g or some vertices have to be selected

together with the set D' to form a dominating set

for G — p. Now we have the following cases.

Case1:1f g is not a cut vertex of <G-D >,
then <(G—p)—(D'U{g})> wil be
connected and therefore D'\ {g} is an outer-

connected dominating set for G — p. Thus
7.(G—p)<ID'U{g}| <| DI =7.(G).
Hence p € V(G) UV (G).

Case 2 : Now let us assume that g is a cut

vertex of <G—D=>. Then
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<(G—-p)—(D'u{g})> is disconnected.
Now let C, be a component of minimum
cardinality in <(G—p)—(D"U{g})>. Also
the set D'UC, will be a minimum outer-
connected dominating set for G—p, as the

vertices of C, will dominate the vertex and C,
is minimum. Thus }7C(G—p)=|D'|+|Ct|Z
|D|=7.(G). Thus p eV (G)UV.(G).

Theorem 4.4. Let G be a graph and D be any minimum outer-connected

dominating set of G. For every v € D, if pn[v,D]= @, then v € ‘76_ (G).

Proof. Suppose that pn[v,D]=¢@. Then every neighbour of v is
adjacent to some vertices of D. Thus D —V is a dominating set for
G—v. Since v e D and <G—-D> is connected,

<(G—v)—(D—v)> 1is connected. Hence D —Vis an outer-

connected dominating set of G—v. Thus

7.(G—Vv)<IDI-1<IDI=7,(G). Therefore ve V. (G).
Theorem 4.5. Let G be a wounded spider with n vertices. Then

VI@UVIG), if degp=AG)
V(G)UV (G), otherwise.
Proof. Let G be a wounded spider by subdividing s edges of a star

K,,,where 0<s<ft—1. Let D be the set of all pendant vertices of G.

12
Then | DI=t. It can be easily verified that, D forms a outer-connected

dominating set for G. Further if D'is an outer-connected dominating
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set for G other than D. Clearly G — D' can have at most one pendant
vertex, say p,, and therefore | D'|>¢—1. Further to dominate the vertex
p, at least one non pendant vertex should be included in D'. Thus
ID'|>ID| and so D is a minimum outer-connected dominating set for
G.

1 Suppose p is a pendant vertex of G and
(p.q) € E(G). Then g¢&D. Suppose g is not a private
neighbour of p. Then by Theorem 4.3 (ii), p 6‘7; (G).
Suppose ¢ is a private neigbour of p in <V(G)— D >.Since
G is a wounded spider, deg; g =2is either two or A(G).
Suppose deg; g =2. Then q is adjacent with p and a vertex

of maximum degree. Therefore deg; ;, g =1. Thus g is not a
cut vertex in <G-D>. By Theorem 4.3(ii),
ve ‘7(.0(G) UVJ (G).

Suppose deg; q=A(G). Since g is the private

neigbour of p, thenin the star K,,, t-1 edges should have

1>
been subdivided. Therefore there are t—1 vertices of degree

two inG . Choose one such vertex, sayw. Now the set

D'=(D—{p})uw{w} dominates G —{ p}.Since
deg.w=2, w is adjacent to gand a pendant. Therefore
deg_, p. w=1 so that <(G—{p})—D'>is connected.

Thus D' forms an outer-connected dominating set for

G—p. Hence 7.(G—{pH=<ID'|=IDI=7.(G). Hence
p eVl (G)UV (G).
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(i) Let deg p=2. Since peG—D, D is a dominating
set for G-p also. Further deg p=1
in<G—D >, removal of p will not affect the connectivity
of G—D. Thus D is a outer-connected dominating set for
G-p, and so J.(G-p)<IDI=y.(G). Hence
veV (G)UV. (G).

(iii) Now let us assume that deg p = A(G).Consider
<G—{p}>. Suppose deg, p=n—1. Then
<G—{p}>is totally disconnected and G is a star
K,, . Then by Theorem 3.4, we have pe ‘7(0 (G).
Suppose deg p<n—1. Then <G-{p}> is a
disconnected graph having s copies of K,, where
s21 and f—scopies of K,. Then by Theorem 2.5,
7.(G—{p})=n—1-max{l,0} =n—1—-1=n-2
=A+zt+s)—2=t+5-12t=7.(G) (since s 2 1).
Hence p eV’ (G)UV. (G), if deg p=A(G).

Theorem 4.6. Let G be a caterpillar with n vertices and €2 be the set

of all pendant vertices of G . If Q forms a dominating set for G then
any vertex v eV (G)—Q,

e {v;“(G)uvl‘ (G). if deg g0 v=1
V(G), otherwise.
Proof. Since G is a caterpillar, degree of any vertex is either one
or two in<V(G)—Q>. Let veV(G)—CQ. Since Q dominates G
andv eV (G)—Q, Q dominates G —{v}.
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Case 1 : Suppose degv=1 in <V(G)—CQ>. Since
<V(G)—€Q > is connected and degv=1lin <V(G)—-Q>,
<(V(G)—{v})—Q>is connected. Thus € is an outer-
connected dominating set of G—-{v} and
7.(G—{v}) <IQI=7.(G).Therefore vV (G) UV (G).

Case 2 : Suppose degv=2 in <V(G)—Q>. Since G is a
caterpillar, <G—-C>is a path. Also since degv=2,
<(V(G)—{v})—Q > is disconnected into exactly two components.
Let C, be the minimum cardinality of those components and
consider the set {2'=C, UC. Clearly Q' dominates G—{v} and
<G—{v}—Q'> is connected. Therefore ) forms a minimum
outer-connected dominating set for G—{v} (Since and C, is
minimum). Thus 7. (G—{v})=IQ'1>1Ql=y.(G). Hence
veVi(G).

Theorem 4.7. Let G be a caterpillar and Q) be the set of all pendant

vertices of G. For any minimum outer-connected dominating set D of

G,D-QcV (G)UV. (G).

Proof: Let ve D—C). . Suppose v has no private neighbours. Then
clearly D —{v}dominates G—{v}. Since <G—D > is connected
and veD,<(G-{v})-(D—-{v})> 1is connected. Therefore

D —{v} forms an outer-connected dominating set of D —{v}.
Thus 7.(G—{v}) <IDI-1<IDI=7(G). Hence v € V. (G).

Suppose V has a private neighbour, say u, in <G—D>. Also

since Qc D, u is not a pendant vertex of G. Consider G —{v}.
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Clearly u is not dominated by D —{v}. Therefore consider the set
D'=(D—{v})u{u}. Since ueV(G)—Dand G is a caterpillar, u
lies in the path. Then deg_; ;. u is either one or two.

Suppose degu=2in <V(G)—D>. Let u,and u, be the
neighbours of # in<V(G)—D >. Then v,u, and u, are non-pendant

vertices of G and hence G—Q2 is not a path, which is a contradiction
to the fact G is a caterpillar. Therefore deg u#2. So degu=1 in
<V(G)—D >. Then clearly <(G—{v})—D'" > is connected. Thus

D’ is a outer-connected dominating set for G —{v}and therefore

7.(G—{v}) <ID'1=I1D1=7.(G). Hence veV’(G)UV. (G).
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